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Abstract

We study domain decomposition methods for fourth-order plate problems. The well-known von K�aarm�aan equations

are used as our model problem. By exploiting the symmetry of the domain, the solution of the original problem can be

obtained by solving those associated reduced problems, which are defined on subdomains with appropriate boundary

conditions. We show how nonoverlapping and overlapping domain decomposition methods can be used to solve the

reduced problems. For the linearized von K�aarm�aan equation, we present preconditioners using both Fourier analysis

and probing techniques for the interface systems, which are similar to those derived by Chan et al. Finally, we compare

the efficiency of various domain decomposition preconditioners for solving the von K�aarm�aan equations.
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1. Introduction

Here, we consider fourth-order nonlinear elliptic eigenvalue problems of the following form:

Gðu; kÞ ¼ 0; ð1:1Þ

where G : X � Rk ! X is a smooth operator, X is some Banach space, u 2 X and k 2 Rk; kP 1. Here, u
represents a solution field (e.g., displacements) and k is a real vector of physical parameters. We will solve

Eq. (1.1) numerically by the continuation method, based on parametrizing the solution branch by arc-

length, say ½uðsÞ; kðsÞ�: First we discretize Eq. (1.1), for example, by a finite difference method or a finite
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element method. In both cases, Eq. (1.1) is approximated by a finite-dimensional problem of the following

form:

Hðx; kÞ ¼ 0; ð1:2Þ

where H : RN � Rk ! RN is a smooth mapping of x 2 RN and k 2 Rk. Viewing some component of k as the

continuation parameter, the continuation algorithms can be implemented to trace solution curves of Eq.

(1.2).

A typical example of Eq. (1.1) is the well-known von K�aarm�aan equations [11, pp. 439–453]. Recently

Chien and coworkers [6,7] investigated numerical solutions of the von K�aarm�aan equations, where some
conjugate gradient type methods were incorporated in the context of continuation methods to trace so-

lution curves and detect bifurcation points. In particular, Chien et al. [8] studied symmetry and scaling

properties of the von K�aarm�aan equations

D2wþ k
o2w
ox2

� ½f ;w� ¼ 0; D2f þ 1
2
½w;w� ¼ 0 in X ¼ ½0; l� � ½0; 1� ð1:3Þ

with simply supported boundary conditions

w ¼ Dw ¼ 0; f ¼ Df ¼ 0 on oX: ð1:4Þ

Here X represents the shape of a rectangular plate in its flat state, f ðx; yÞ is the Airy stress function de-

scribing the averaged stress over the thickness of the plate, wðx; yÞ is the deformation of the plate under the

action of the external load k, and the bracket operator ½�; �� is defined by

½u; v� ¼ uxxvyy � 2uxyvxy þ uyyvxx:

By exploiting symmetries of the domain, Chien et al. showed that solution branches of (1.3) with

boundary conditions (1.4) can be represented by solving the associated reduced problems defined on

the fundamental domains C ¼ ½0; l=2m� � ½0; 1=2n�;m; n 2 N. Here, both w and f satisfy the boundary

conditions

u ¼ Du ¼ 0 on x ¼ 0 and y ¼ 0;

ou
on

¼ o3u
on3

¼ 0 on x ¼ l
2m

and y ¼ 1

2n
:

ð1:5Þ

In this paper, we will show how the domain decomposition methods can be used to solve fourth-order

nonlinear eigenvalue problems. In the past two decades, domain decomposition has been a very popular

research topic, partly because of the potential of parallel implementation [13,15]. For second-order elliptic

problems, there are plenty of published research articles, see e.g., [2] and the further references cited therein.

One of the main issues concerning domain decomposition methods is how to design efficient precondi-

tioners for the interface operators corresponding to the Laplace equation defined on a rectangle which is

decomposed into two subrectangles, see e.g., [15]. For fourth-order problems, less satisfactory results are
known. In [5] Chan et al. presented preconditioners for the interface system arising from solving the fol-

lowing biharmonic equation with 13-point finite difference discretizations

D2w ¼ q in X ¼ ½0; 1�2: ð1:6Þ

Here, three kinds of boundary conditions are imposed on oX:
(i) The simply supported boundary conditions

w ¼ Dw ¼ 0 on oX: ð1:7Þ
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(ii) The clamped boundary conditions

w ¼ wn ¼ 0 on oX: ð1:8Þ
(iii) The mixed boundary conditions

wjoX ¼ DwjoXx
¼ wnjoXy

¼ 0; ð1:9Þ

where oXx and oXy denote the part of oX that are parallel to the x- and y-axis, respectively. By using discrete
Fourier analysis, they obtained the exact eigen-decomposition of the interface Schur complement for Eq.

(1.6) with boundary conditions (1.7) and (1.8), respectively.

Our aim here is to design efficient preconditioners when the 13-point centered difference approximations

combined with domain decomposition method are exploited to solve Eq. (1.1), where both of the nonover-

lapping and overlapping domain decomposition are considered. In the discussion given below, we use the von

K�aarm�aan equations as our example. However, our results can be applied to any fourth-order problems as well.

This paper is organized as follows: In Section 2, we briefly review a domain decomposition method for

the linearized von K�aarm�aan equation, where only nonoverlapping domain decomposition is considered. We
obtain results similar to those of Chan et al. [5]. In Section 3, we discuss how nonoverlapping and over-

lapping domain decomposition can be incorporated in the context of continuation methods to solve fourth-

order nonlinear elliptic eigenvalue problems. In particular, the probing technique discussed in Section 2 is

used as a preconditioner for overlapping domain decomposition. Our numerical results are reported in

Section 4. Finally, some concluding remarks are given in Section 5.
2. A brief review of domain decomposition method for linear problems

For simplicity, we rewrite the linearized von K�aarm�aan equation with simply supported boundary con-

ditions as follows:

D2wþ kwxx ¼ 0 in X� ¼ ½0; 1� � ½0; 1�;
w ¼ Dw ¼ 0 on oX�:

ð2:1Þ

The eigenpairs of (2.1) are

km;n ¼
p
m

� �2

ðm2 þ n2Þ2;

wm;nðx; yÞ ¼ sinmpx sin npy; m; n ¼ 1; 2; 3; . . .
ð2:2Þ

By exploiting the rule of separation of variables, the first eigenpair of (2.1) can be obtained by solving the

following associated reduced problem:

D2wþ kwxx ¼ 0 in X ¼ ½0; 1
2
� � ½0; 1

2
�;

w ¼ Dw ¼ 0 on x ¼ 0 and y ¼ 0;

wn ¼ wnnn ¼ 0 on x ¼ 1
2
and y ¼ 1

2
:

ð2:3Þ

The eigenpairs of (2.3) are

km;n ¼
2p2ð2nþ 1Þ2 � p2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðð2nþ 1Þ4 þ ð2mþ 1Þ4Þ

q
; m < n;

4p2ð2nþ 1Þ2; m ¼ n;

8<
:

wm;nðx; yÞ ¼ sinð2mþ 1Þpx sinð2nþ 1Þpy; m; n ¼ 0; 1; 2; . . .

ð2:4Þ
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Setting m ¼ n ¼ 1 in (2.2) and m ¼ n ¼ 0 in (2.4), it is clear that the first eigenpair of (2.1) and (2.3) are the

same.

Suppose that X is decomposed into two subdomains X1 and X2 with interface C, as shown in Fig. 1. We

also suppose that a uniform mesh with size h is used on X, with L grid points in the y-axis. The simplest way

of decoupling the two subdomains is to introduce two computational grid interfaces Xh
3 and Xh

4 near the

physical interface C. Assume that

l1 ¼ m1h; l2 ¼ ðm2 � 1Þh;

where m1 and m2 denote the number of grid points along the y-axis of the two subdomains Xh
1 and Xh

2. Note
that L ¼ m1 þ m2 þ 2. Suppose that the unknowns are ordered in such a way that the interior points in the

subdomains appear first and those on the two interfaces appear last, then the discrete solution vector w can

be expressed as w ¼ ðw1;w2;w3;w4Þ, where the wis denote the unknowns on Xh
i .

Let A and D 2 RL2�L2 be the discretization matrices corresponding to the differential operators D2 and

o2=ox2, respectively. We have

ð2:5Þ
Fig. 1. The domain X and its partition.
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with
A2 ¼ A1 � I , A3 ¼ A1 þ I , I is the L� L identity matrix, and

D ¼ diagðDL; . . . ;DLÞ ð2:6Þ

with

Hence, the discretization system corresponding to Eq. (2.3) is

Hðw; kÞ ¼ Awþ kDw ¼ 0; ð2:7Þ

where H : RL2 � R ! RL2 is a smooth mapping of w 2 RL2 and k 2 R. We denote the Jacobian of H by

DH ¼ ½DwH ;DkH � and the solution curve c of (2.7) by

c ¼ fyðsÞ ¼ ðwðsÞ; kðsÞÞ jHðyðsÞÞ ¼ 0; s 2 I � Rg:

In predictor–corrector continuation methods, we need to solve linear systems of the following form:

�AA p
qT c

� �
w
k

� �
¼ f

g

� �
; ð2:8Þ

where p; q; f 2 RL2 and c; g 2 R. The block elimination algorithm [12] is given as follows:

Algorithm 2.1 (Block elimination).

Step 1. Solve �AAu ¼ p, �AAv ¼ f .
Step 2. Compute k ¼ ðg � qTvÞ=ðc� qTuÞ.
Step 3. Compute w ¼ v� ku.
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2.1. Fourier analysis of the interface operator

Now we discuss preconditioners for the interface systems arising from solving fourth-order plate

problems. For simplicity, we rewrite the linear systems in Step 1 of Algorithm 2.1 as

�AAw ¼ b;

where �AA ¼ DwHðyiÞ ¼ AðyiÞ þ kDðyiÞ, which can be expressed in block form as:

A11 0 A13 A14

0 A22 A23 A24

A31 AT
23 A33 A34

AT
14 A42 AT

34 A44

2
664

3
775

w1

w2

w3

w4

2
664

3
775 ¼

b1
b2
b3
b4

2
664

3
775: ð2:9Þ

From the linear system (2.9) we obtain

w1 ¼ A�1
11 ðb1 � A13w3 � A14w4Þ

and

w2 ¼ A�1
22 ðb2 � A23w3 � A24w4Þ:

On substituting w1 and w2 into (2.9), we obtain the following reduced system:

C
w3

w4

� �
¼ g3

g4

� �
; ð2:10Þ

where

C ¼ A33 A34

AT
34 A44

� �
� A31 AT

23

AT
14 A42

� �
A�1
11 0

0 A�1
22

� �
A13 A14

A23 A24

� �
� C11 C12

C21 C22

� �

is the Schur complement matrix corresponding to the reduced interface operator, and

g3 ¼ b3 � A31A�1
11 b1 � AT

23A
�1
22 b2;
g4 ¼ b4 � AT
14A

�1
11 b1 � A42A�1

22 b2:

The blocks C11 and C22 account for the coupling of the unknowns on Xh
1 and Xh

2, respectively, among

themselves, and the blocks C12 and C21 account for the coupling between the unknowns on the two interfaces.

Defining b01 ¼ A�1
11 b1 and b02 ¼ A�1

22 b2 , the solution to the linear system (2.9) is obtained by applying the

block elimination once more.

Algorithm 2.2 (Block elimination algorithm for solving (2.9)).

Step 1. Solve A11b01 ¼ b1;A22b02 ¼ b2, successively.
Step 2. Compute g3 ¼ b3 � A31b01 � AT

23b
0
2, g4 ¼ b4 � AT

14b
0
1 � A42b02.

Step 3. Solve

C
w3

w4

� �
¼ g3

g4

� �
:

Step 4. Compute g1 ¼ b1 � A13w3 � A14w4, g2 ¼ b2 � A23w3 � A24w4.

Step 5. Solve A11w1 ¼ g1, A22w2 ¼ g2, respectively, or on a parallel computer.



482 S.-L. Chang, C.-S. Chien / Journal of Computational Physics 191 (2003) 476–501
Since C is dense, unsymmetric and expensive to form explicitly, the preconditioned iterative methods

are usually preferred to solve the linear system (2.10). In this paper, the preconditioned GMRES is

implemented. The key point is to find an efficient preconditioner for C. In an approach similar to that

described in [5], we use discrete Fourier analysis for eigen-decomposition of the Schur complement

matrix C. For the problem (2.3), however, the computations are more complicated than those given in

[5].

Denote by vj; j ¼ 1; . . . ; L; the eigenvectors of the one-dimensional discrete Laplace operator:

vj ¼
ffiffiffiffiffi
4h

p
sinð2jphÞ; sinð4jphÞ; . . . ; sinð2LjphÞ½ �T;

where h ¼ 1=2ðLþ 1Þ. Next, let V ¼ v1; v2; . . . ; vL½ � be the matrix formed by these eigenvectors. We shall

diagonalize C by diagonalizing each of its four individual blocks with a similarity transformation using V.

We need a general solution for the discrete biharmonic equations on the subdomains, which is obtained by

using the method of separation of variables.

Substituting the expression V ðih; khÞ ¼ dk
ffiffiffiffiffi
4h

p
sinð2ijphÞ into the discrete model

D2
hV þ kh2DV ¼ 0; ð2:11Þ

we get the following fourth-order difference equation for dk:

b0dkþ2 þ b1dkþ1 þ b2dk þ b1dk�1 þ b0dk�2 ¼ 0; ð2:12Þ

where

b0ðjÞ ¼ 1;

b1ðjÞ ¼ �8þ 4 cosð2jphÞ;
b2ðjÞ ¼ 20� 2kh2 þ ð2kh2 � 16Þ cosð2jphÞ þ 2 cosð4jphÞ:

We denote by dk the solution of (2.12) with boundary conditions

d0 ¼ 0; d1 ¼ 1; dm1
¼ 0; dm1þ1 ¼ �dm1�1: ð2:13Þ

The boundary conditions (2.13) are needed for the computation of terms such as A31A�1
11 A13vj and

AT
14A

�1
11 A14vj. Similarly we denote by ~ddk the solution of (2.12) with boundary conditions

~dd0 ¼ 0; ~dd1 ¼ 1; ~ddm2�1 ¼ ~ddm2þ1; ~ddm2�2 ¼ ~ddm2þ2: ð2:14Þ

The boundary conditions (2.14) are needed for the computation of terms such as A32A�1
22 A23vj and

A42A�1
22 A24vj. Explicit expressions for dk and ~ddk will be given later. By routine computation one may readily

verify that the following relations hold:

A33vj ¼ b2vj;
A31A�1
11 A13vj ¼

1

aj
ðb21d1 þ 2b1d2 þ d1Þvj;
A32A�1
22 A23vj ¼

1

bj

~dd1vj;
A34vj ¼ b1vj;
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A31A�1
11 A14vj ¼

1

aj
ðb1d1 þ d2Þvj;
AT
23A

�1
22 A13vj ¼

1

bj

ðb1~dd1 þ ~dd2Þvj;
AT
14A

�1
11 A13vj ¼

1

aj
ðb1d1 þ b2Þvj;
A42A�1
22 A23vj ¼

1

bj
ðb1~dd1 þ ~dd2Þvj;
A44vj ¼ b2vj;
AT
14A

�1
11 A14vj ¼

1

aj
d1vj;
A42A�1
22 A24vj ¼

1

bj
ðb21~dd1 þ 2b1~dd2 þ ~dd1Þvj;

where

aj ¼ b2ðjÞ þ b1ðjÞd2ðm1Þ þ d3ðm1Þ;
bj ¼ b2ðjÞ þ b1ðjÞ~dd2ðm2Þ þ ~dd3ðm2Þ:

We note that in the computation of terms such as A31A�1
11 A13vj and A42A�1

22 A24vj and so on, only the first two

components of A31vj and A13vj are nonzero. Thus, we only need to compute the first leading 2� 2 block

principal submatrices of A�1
11 and A�1

22 . In order to keep the middle term of the right-hand side of (2.15)

symmetric, we make some simplification so that the leading 2� 2 block principal submatrices of A�1
11 and

A�1
22 are symmetric. We summarize these results by stating the following:

Theorem 2.1. The interface Schur complement C has the following diagonalized form:

C ¼ V 0

0 V

� �
K11 K12

K21 K22

� �
V 0

0 V

� �
; ð2:15Þ

where

K11 ¼ diagðk11;jÞ; K22 ¼ diagðk22;jÞ; K12 ¼ diagðk12;jÞ; K21 ¼ K12;

and

k11;j ¼ b2 �
1

aj
ðb21d1ðm1Þ þ 2b1d2ðm1Þ þ d1ðm1ÞÞ �

1

bj

~dd1ðm2Þ;
k12;j ¼ b1 �
1

aj
ðb1d1ðm1Þ þ d2ðm2ÞÞ �

1

bj
ðb1~dd1ðm2Þ þ ~dd2ðm2ÞÞ;
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k22; j ¼ b2 �
1

aj
d1ðm1Þ �

1

bj
ðb21~dd1ðm1Þ þ 2b1~dd2ðm2Þ þ ~dd1ðm2ÞÞ:

We now proceed to derive explicit expressions for dk and ~ddk. The characteristic roots g for the difference

scheme (2.12) satisfy the following relation:

b0ðgþ g�1Þ2 þ b1ðgþ g�1Þ þ b2 � 2b0 ¼ 0;

or

gþ g�1 ¼ 1

2b0

�
� b1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b21 þ 8b20 � 4b2b0

q �
� �b1

2
� dðjÞ

2
ð2:16Þ

with

dðjÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b21 þ 8b20 � 4b2b0

q
¼ 4

ffiffiffi
k

p
h sinðjphÞ:

Eq. (2.16) has four roots r, r�1, s and s�1, with

r ¼ 1

4

�
� b1 þ d�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðb1 � dÞ2 � 16

q �

and

s ¼ 1

4

�
� b1 � d�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðb1 þ dÞ2 � 16

q �
:

A straightforward computation yields the following solutions

dkðm1Þ ¼ fkðrm1 þ r�m1Þðrk�m1 � rm1�kÞ þ 2ðm1 � kÞðrk � r�kÞg
� fðrm1 þ r�m1Þðr1�m1 � rm1�1Þ þ 2ðm1 � 1Þðr � r�1Þg�1

;

and

~ddkðm2Þ ¼ fkðrm2 þ r�m2Þðrk�m2 � rm2�kÞ � 2m2ðrk � r�kÞg
� fðrm2 þ r�m2Þðr1�m2 � rm2�1Þ � 2m2ðr � r�1Þg�1

:

If we consider 0 < r; s < 1, and let m1;m2 ! 1 (i.e., in the case of an infinite strip), then

dk ¼ krk�1; ~ddk ¼ krk�1:

On the other hand, if we consider 0 < 1
r ;

1
s < 1 and let m1;m2 ! 1, then

dk ¼ kr1�k; ~ddk ¼ kr1�k:

The results in Theorem 2.1 now take the form of:

Theorem 2.2. For the discretization scheme of (2.3) on an infinite strip (m1;m2 ¼ 1), when hii 0 < r < 1, we

have

aj ¼ bj ¼ b2ðjÞ þ 2b1ðjÞr þ 3b0ðjÞr2;
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k11; j ¼ b2 �
1

aj
ðb21 þ 4b1r þ 2Þ;
k12; j ¼ b1 �
2

aj
ðb1 þ 2rÞ;

and

k22; j ¼ k11;j;

and when hiii 0 < 1=r < 1, we have

aj ¼ bj ¼ b2ðjÞ þ 2b1ðjÞ
1

r
þ 3b0ðjÞ

1

r2
;

k11; j ¼ b2 �
1

aj
b21

�
þ 4b1

1

r
þ 2

�
;

k12; j ¼ b1 �
2

aj
b1

�
þ 2

1

r

�
;

and

k22; j ¼ k11; j:

Now we are ready to construct preconditioners for the interface Schur complements. Denote by M and

M1 the matrices obtained in Theorems 2.1 and 2.2, respectively. It is clear from their construction that M
and M1 are respective analogs of Chan�s [1] and Golub/Mayer�s [10] preconditioners for fourth-order plate
problems. Both of the preconditionersM andM1 will be implemented to solve the linear system in Step 3 of

Algorithm 2.2.

2.2. The interface probing preconditioner

We observe that the interface operator C has strong spatial local coupling and weak global coupling

in each continuation step, i.e., the entries of C decay rapidly away from the main diagonal, see Fig. 2.

Hence, we use the interface probing technique to construct efficient preconditioners for C. The probing

technique was introduced by Chan and Resasco [4], and by Keyes and Gropp [13], as an algebraic

technique for constructing sparse approximation to the interface operator C. The main idea is to

approximate C by a matrix having a specified sparsity pattern using matrix–vector products of C with a

few carefully chosen probe vectors. The sparsity pattern is chosen to capture the strongest coupling
of C.

Let Md be a banded approximation with upper and lower bandwidth d to the interface operator C as

proposed in [3]. We introduce the notation

Md ¼ PROBEðC; dÞ ð2:17Þ

to denote that Md is constructed from C using the PROBE procedure, and let

Mk;l ¼
PROBEðC11; kÞ PROBEðC12; lÞ
PROBEðC21; lÞ PROBEðC22; kÞ

� �
ð2:18Þ



Fig. 2. Plot of elements of C.
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be a preconditioner for C consisting of k-diagonal approximations for the diagonal blocks C11 and C22, and

l-diagonal approximations for the off-diagonal blocks C12 and C21. We illustrate the PROBE procedure for

the case d ¼ 1, in which case M1 is a tridiagonal matrix, and the following three probe vectors are given by:

v1 ¼ ð1; 0; 0; 1; 0; 0; . . .ÞT, v2 ¼ ð0; 1; 0; 0; 1; 0; . . .ÞT and v3 ¼ ð0; 0; 1; 0; 0; 1; . . .ÞT. Since M1 is tridiagonal, it
can be easily checked that all its nonzero entries appear in the vectors M1vi; i ¼ 1; 2; 3, as illustrated below:

m11 m12

m21 m22 m23

m32 m33 m34

m43 m44 m45

m54 m55
. .
.

. .
. . .

.

2
66666664

3
77777775

1 0 0

0 1 0
0 0 1

1 0 0

0 1 0

..

. ..
. ..

.

2
6666664

3
7777775
¼

m11 m12 0

m21 m22 m23

m34 m32 m33

m44 m45 m43

m54 m55 m56

..

. ..
. ..

.

2
66666664

3
77777775
: ð2:19Þ

The probe algorithm reconstructs the nonzero entries of M1 by equating the right-hand side of (2.19) to the

corresponding entries in the vectors Cv1;Cv2;Cv3½ �.
3. Domain decomposition for nonlinear problems

In this section, we discuss how to use both nonoverlapping and overlapping domain decomposition to

solve fourth-order nonlinear plate problems.

3.1. Nonoverlapping domain decomposition

Theoretical study of domain decomposition method for nonlinear problems was given in [9]. We con-

sider the reduced problem for the nonlinear von K�aarm�aan equations [8] as follows:
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D2wþ k
o2w
ox2

� ½f ;w� ¼ 0;

D2f þ 1
2
½w;w� ¼ 0 in X ¼ ½0; 1

2
� � ½0; 1

2
�;

f ¼ Df ¼ 0; w ¼ Dw ¼ 0 on x ¼ 0 and y ¼ 0;

fn ¼ fnnn ¼ 0; wn ¼ wnnn ¼ 0 on x ¼ 1
2
and y ¼ 1

2
:

ð3:1Þ

Let X be decomposed as in Section 2. Then the matrices A and D can be expressed as in Eqs. (2.5) and

(2.6). Let E and V 2 RL2�L2 be the discretization matrices corresponding to the differential operators o2=oy2

and o2=oy ox, respectively. We have

and

where I is the L� L identity matrix, and
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Definition 3.1. For any x ¼ ðx1; . . . ; xN ÞT, y ¼ ðy1; . . . ; yN ÞT 2 RN , we define x � y 2 RN by x � y ¼
ðx1y1; . . . ; xNyN ÞT. For any A ¼ ða1; . . . ; aN ÞT 2 RN�N with aTi denotes the ith row of A, and

x ¼ ðx1; . . . ; xNÞT 2 RN , we define A � x 2 RN�N by A � x ¼ ðx1a1; . . . ; xNaN ÞT.

Let Z ¼ ½W ; F �T 2 R2L2 , the discretization system corresponding to Eq. (3.1) is

HðZ; kÞ ¼ H1ðZ; kÞ;H2ðZ; kÞ½ �T ¼ 0; ð3:2Þ

with

H1ðZ; kÞ ¼ AW þ kDW � ðDF Þ � ðEW Þ þ 2
1

4
VF

� �
� 1

4
VW

� �
� ðEF Þ � ðDW Þ

¼ AW � ðDW Þ � ðEF Þ � ðEW Þ � ðDF Þ þ 1

8
ðVW Þ � ðVF Þ þ kDW ;
H2ðZ; kÞ ¼ AF þ ðDW Þ � ðEW Þ � 1

16
ðVW Þ � ðVW Þ:

The Jacobian matrix corresponding to (3.2) is

DHðZ; kÞ ¼ ½DZHðZ; kÞ;DkHðZ; kÞ� ¼
~AAðZ; kÞ �MðZ; kÞ DW
MðZ; kÞ A 0

� �
; ð3:3Þ

where

MðZ; kÞ ¼ D � ðEW Þ þ E � ðDW Þ � 1

8
V � ðVW Þ

and

~AAðZ; kÞ ¼ A� D � ðEF Þ � E � ðDF Þ þ 1

8
V � ðVF Þ þ kD:

We refer to [6] for details.

3.2. The interface probing preconditioner for nonlinear systems

We rewrite the linear systems in Step 1 of Algorithm 2.1 as

�AAz ¼ b; ð3:4Þ

where �AA ¼ DZHðyiÞ ¼
~AAðyiÞ �MðyiÞ
MðyiÞ A

� �
: The structure of �AA is shown in Fig. 3. We can find a transfor-

mation matrix P such that Eq. (3.4) can be written as

ÂAu ¼ p ð3:5Þ

with ÂA ¼ PT �AAP ; u ¼ PTz and p ¼ PTb. The structure of ÂA is shown in Fig. 4. Eq. (3.5) can be expressed in

block form as:

A11 0 A13 0 A15

0 A22 0 A24 A25

�A13 0 A33 0 A35

0 �A24 0 A44 A45

A51 A52 A53 A54 A55

2
66664

3
77775

u1
u2
u3
u4
u5

2
66664

3
77775 ¼

p1
p2
p3
p4
p5

2
66664

3
77775: ð3:6Þ



Fig. 3. The structure of �AA.

Fig. 4. The structure of ÂA.
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From the linear system (3.6) we obtain u1 ¼ A�1
11 ðp1 � A13u3 � A15u5Þ, u2 ¼ A�1

22 ðp2 � A24u4 � A25u5Þ, u3 ¼
A�1
33 ðp3 þ A13u1 � A35u5Þ; and u4 ¼ A�1

44 ðp4 þ A24u2 � A45u5Þ. Substituting u1; u2; u3; and u4 into (3.6) and letting

E1 ¼ A11 þ A13A�1
33 A13;
E2 ¼ A22 þ A24A�1
44 A24;
E3 ¼ A33 þ A13A�1
11 A13;
E4 ¼ A44 þ A24A�1
22 A24;
F1 ¼ E�1
1 ð�A15 þ A13A�1

33 A35Þ;
F2 ¼ E�1
2 ð�A25 þ A24A�1

44 A45Þ;
F3 ¼ E�1
3 ðA35 þ A13A�1

11 A15Þ;
F4 ¼ E�1
4 ðA45 þ A24A�1

22 A25Þ;
f1 ¼ E�1
1 ðp1 � A13A�1

33 p3Þ;
f2 ¼ E�1
2 ðp2 � A24A�1

44 p4Þ;
f3 ¼ E�1
3 ðp3 þ A13A�1

11 p1Þ;
and

f4 ¼ E�1
4 ðp4 þ A24A�1

22 p2Þ
we obtain the following reduced system

�CCu5 ¼ �pp; ð3:7Þ
where �CC ¼ A55 þ A51F1 þ A52F2 � A53F3 � A54F4 is the Schur complement matrix corresponding to the re-

duced interface operator, and �pp ¼ p5 � A51f1 � A52f2 � A53f3 � A54f4: Hence, the solution to the linear

system (3.6) is obtained by applying the block elimination again.
Algorithm 3.1 (Block elimination algorithm for solving (3.6)).
Step 1. Solve (1) A33X1 ¼ A13;A33Y1 ¼ A35;A33s1 ¼ p3,
(2) A44X2 ¼ A24;A44Y2 ¼ A45;A44s2 ¼ p4,
(3) A11X3 ¼ A13;A11Y3 ¼ A15;A11s3 ¼ p1,

and (4) A22X4 ¼ A24;A22Y4 ¼ A25;A22s4 ¼ p2.
Step 2. Compute (1) E1 ¼ A11 þ A13X1; Z1 ¼ �A15 þ A13Y1; t1 ¼ p1 � A13s1;

(2) E2 ¼ A22 þ A24X2; Z2 ¼ �A25 þ A24Y2; t2 ¼ p2 � A24s2;
(3) E3 ¼ A33 þ A13X3; Z3 ¼ A35 þ A13Y3; t3 ¼ p3 þ A13s3;

and (4) E4 ¼ A44 þ A24X4; Z4 ¼ A45 þ A24Y4; t4 ¼ p4 þ A24s4.
Step 3. Solve (1) E1F1 ¼ Z1;E1f1 ¼ t1;

(2) E2F2 ¼ Z2;E2f2 ¼ t2;



(3) E3F3 ¼ Z3;E3f3 ¼ t3;
and (4) E4F4 ¼ Z4;E4f4 ¼ t4:

Step 4. Compute �CC ¼ A55 þ A51F1 þ A52F2 � A53F3 � A54F4;
and �pp ¼ p5 � A51f1 � A52f2 � A53f3 � A54f4:

Step 5. Solve �CCu5 ¼ �pp:
Step 6. Compute (1) u1 ¼ f1 þ F1u5, (2) u2 ¼ f2 þ F2u5,

(3) u3 ¼ f3 � F3u5; and (4) u4 ¼ f4 � F4u5.
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In Steps 1, 2, 3 and 6 of Algorithm 3.1, we can solve (1), (2), (3) and (4) on a parallel computer.

The Schur complement matrix �CC is dense, unsymmetric and expensive to form explicitly. However, it has

strong spatial local coupling and weak global coupling in each continuation step. See Fig. 5. Hence, the

interface probing preconditioners M1, M2, M3;1, and M5;3 defined in Section 2.2 will be used to solve the
linear system in Step 5 of Algorithm 3.1.

3.3. Overlapping domain decomposition

In this section,we describe the overlapping domain decomposition for solving fourth-order plate problems.

3.3.1. Discretization of the von K�aarm�aan equation on the overlapping domain

We suppose that X is decomposed into s-fold overlapping subdomains X1;X2; . . . ;Xs with Ci;iþ1 as the
common border of Xi and Xiþ1 as shown in Fig. 6.

We suppose that a uniform mesh with size h is used on X with L grid points on the y-axis. We also

suppose that Xh
i;iþ1 and Xh

iþ1;i are the mesh lines in Xi and Xiþ1, respectively, which are nearest the mesh line

Ch
i;iþ1 of Ci;iþ1. Let X

h
i be the remaining meshes of Xi . Assume that

l1 ¼ ðm1 þ 2Þh; l2 ¼ ðm2 þ 3Þh; . . . ; ls�1 ¼ ðms�1 þ 3Þh; ls ¼ ðms þ 1Þh;

where mi denotes the number of grid points along the y-axis of the subdomain Xh
i . Note that

L ¼ m1 þ m2 þ � � � þ ms þ 3ðs� 1Þ and l1 þ l2 þ � � � þ ls ¼ 1
2
. Suppose that the unknowns are ordered in such
Fig. 5. Plot of elements of �CC.



Fig. 6. The domain X and its partition for overlapping case.
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a way that the interior points on Xh
1; . . . ;X

h
s successively appear first, and those on the middle three grid lines

that are enclosed by Xh
i and Xh

iþ1 appear last. Then the discrete solution vector w can be expressed as

w ¼ w1; . . . ;ws;w12;w0
12;w21; . . . ;ws�1;s;w0

s�1;s;ws;s�1

h i
;

where wi;wi;iþ1;w0
i;iþ1 and wiþ1;is denote the unknowns on Xh

i , X
h
i;iþ1, C

h
i;iþ1 and Xh

iþ1;i, respectively.

Let A;E; V and D 2 RL2�L2 be the discretization matrices corresponding to the differential operators D2,

o2=oy2, o2=oyox and o2=ox2, respectively. We have
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and D ¼ diagðDL; . . . ;DLÞ, where Ai;B; I ; VL;DL 2 RL�L, for i ¼ 1; . . . ; 3, and �II ¼ �2I , �VVL ¼ �VL.
If we set Z ¼ ½W ; F �T 2 R2L2 , then the discretization system corresponding to Eq. (3.1) is

HðZ; kÞ ¼ H1ðZ; kÞ;H2ðZ; kÞ½ �T ¼ 0; ð3:8Þ

where the formulae for H1ðZ; kÞ, H2ðZ; kÞ and the Jacobian matrix are exactly the same as those given in

Section 3.1.

3.3.2. The Schwarz alternating procedures

Now we discuss how to use the Schwarz alternating procedures to solve fourth-order plate problems

such as the von K�aarm�aan equations. For simplicity, we rewrite the linear systems in Step 1 of Algorithm 2.1

as

�AAu ¼ b; ð3:9Þ

where �AA ¼ DZHðyiÞ ¼
~AAðyiÞ �MðyiÞ
MðyiÞ A

� �
. The structure of �AA is shown in Fig. 7. Evidently, the structures of

~AAðyiÞ and MðyiÞ are the same as that of A. Since the von K�aarm�aan equations have two variables, each

restriction operator Ri from X to Xi can be represented as

where
Fig. 7. The structure of �AA for Eq. (3.9).
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..

.

and

with Ik denotes the k � k identity matrix. Furthermore, the upper left part of the matrix Ri corresponds to

the function w, and the lower right part of Ri corresponds to the function f .
The transpose matrix RT

i of Ri is a prolongation operator which takes a variable from Xi and extends it to
a variable in X.

Define �AAi ¼ Ri
�AART

i of dimension ð2mi þ 2ÞL� ð2mi þ 2ÞL for i ¼ 1 or s and of dimension ð2mi þ 4ÞL�
ð2mi þ 4ÞL for i ¼ 2; . . . ; s� 1 as the restrictions of �AA to Xi . The multiplicative Schwarz method is described

as follows:

Algorithm 3.2 (Multiplicative Schwarz iteration).

For i ¼ 1; . . . ; s Do

u ¼ uþ RT
i
�AA�1
i Riðb� �AAuÞ

EndDo

This method converges very slowly in practical numerical computation. Therefore we consider its pre-

conditioned form. As described in [14], we define the operators Pi ¼ RT
i
�AA�1
i Ri

�AA; for i ¼ 1; . . . ; s and

Qs ¼ ðI � PsÞðI � Ps�1Þ � � � ðI � P1Þ. We note that the multiplicative Schwarz method can be regarded as a

fixed-point method for the following system

M�1
ms

�AAu ¼ M�1
ms b; ð3:10Þ

in which M�1
ms

�AA ¼ I � Qs;M�1
ms b ¼ ðI � QsÞ �AA�1b. Clearly, Mms plays the role of a preconditioner, and it is

called the multiplicative Schwarz preconditioner.

Setting Ti ¼ Pi �AA
�1 ¼ RT

i
�AA�1
i Ri; i ¼ 1; . . . ; s; the algorithm of the multiplicative Schwarz preconditioner

becomes

Algorithm 3.3 (Multiplicative Schwarz preconditioner).

1. Input: b, output: z ¼ M�1
ms b.

2. z ¼ T1b
3. For i ¼ 2 : s Do
4. z ¼ zþ Tiðb� �AAzÞ
5. EndDo
Algorithm 3.4 (Multiplicative Schwarz preconditioned operator).

1. Input: v, output: z ¼ M�1
ms

�AAv.
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2. z ¼ P1v
3. For i ¼ 2; . . . ; s Do

4. z ¼ zþ Piðv� zÞ
5. EndDo

Now we discuss how Algorithms 3.3 and 3.4 can be used to solve the preconditioned nonsymmetric

linear system (3.10). First, the right-hand side of (3.10) can be computed by Algorithm 3.3. Then we can use

some nonsymmetric linear solvers such as GMRES to solve (3.10), where the preconditioned operator
M�1

ms
�AA is computed by Algorithm 3.4.

The additive Schwarz procedure differs from the multiplicative one only on the components in

which each subdomain is not updated until a whole cycle of updates through all subdomains are

completed.

Algorithm 3.5 (Additive Schwarz iteration).

1. Compute r0 ¼ b� �AAu
2. For i ¼ 1; . . . ; s Do

3. Compute di ¼ RT
i
�AA�1
i Rir0

4. EndDo

5. u ¼ uþ d1 þ d2 þ � � � þ ds.

A similar equivalence relation can be stated between the additive Schwarz method and a generalized

block-Jacobi iteration method, see [15]. Let Mas be the additive Schwarz preconditioner. The additive

Schwarz procedure is described as follows:
Algorithm 3.6 (Additive Schwarz preconditioner).

1. Input: b, Output: z ¼ M�1
as b.

2. For i ¼ 1; . . . ; s Do

3. Compute zi ¼ Tib
4. EndDo

5. Compute z ¼ z1 þ z2 þ � � � þ zs:

Note that the do loop can be performed in parallel.

Algorithm 3.7 (Additive Schwarz preconditioned operator).

1. Input: v, Output: z ¼ M�1
as

�AAv.
2. For i ¼ 1; . . . ; s Do

3. Compute zi ¼ Piv
4. EndDo

5. Compute z ¼ z1 þ z2 þ � � � þ zs.
4. Numerical results

We used predictor–corrector continuation methods to trace the first solution branch of (3.1) bifurcating
from the first bifurcation point ðu; k1;1Þ ¼ ð0; 4p2Þ 	 ð0; 39:478418Þ. Both nonoverlapping and overlapping

domain decomposition were considered. All of our computations were executed on an IBM Pentium 4

machine using MATLAB with double precision arithmetic.
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The following notations are used in Tables 1–4.

Example 1 (Nonoverlapping domain decomposition). Eq. (3.1) was discretized by the centered difference
approximations with uniform meshsize h ¼ 0:02174 on the x- and y-axis, respectively. Let the two interface

grid lines Xh
3 and Xh

4 be y ¼ 0:25� ðh=2Þ and y ¼ 0:25þ ðh=2Þ, respectively. We chose m1 ¼ 10, m2 ¼ 11,

and obtained the linear system

ÂAu ¼ p; ð4:1Þ

NCS ordering of the continuation steps.

e accuracy tolerance in Newton corrector.

j2 the two-norm condition number of DwHðyiÞ.
tol stopping criterion for the GMRES method.

NCI number of corrector iterations required at each continuation step.
MAXN maximum norm of the approximating solution w.
itr average number of iterations required by using the GMRES to solve linear systems in

predictor (corrector) steps.

Time the total execution time (in seconds) for performing 60 continuation steps.
Table 1

Sample result for Example 1, h ¼ 0:02174, e ¼ 5:0� 10�4, tol ¼ 10�10, k� ¼ 39:3179, overlapping subdomains

NCS k MAXN j2 Method I II III IV V

NCI itr itr itr itr itr

6 38.4839 0.03706 3.0039E+07 2 92 63 82 61 77

11 39.1151 0.09865 7.4413E+07 2 92 64 83 61 79

16 39.3179 0.18009 9.9096E+07 2 92 64 83 61 80

21 39.4374 0.26264 8.6110E+07 2 92 64 83 61 80

26 39.5468 0.34512 6.4552E+07 2 92 64 82 61 80

31 39.6562 0.42701 5.0073E+07 2 92 64 82 61 80

41 47.1121 2.21021 1.7805E+07 2 92 63 80 60 79

60 127.9609 8.24570 4.6549E+05 2 92 60 78 59 78

Time 1361 1350 1385 1346 1382

Table 2

Sample result for Example 1, h ¼ 0:01282, e ¼ 5:0� 10�4, tol ¼ 10�10, k� ¼ 39:3430, overlapping subdomains

NCS k MAXN j2 Method I II III IV V

NCI itr itr itr itr itr

8 38.8897 0.05102 4.0627E+08 3 156 95 44 91 41

18 39.3091 0.14811 9.0386E+08 2 156 97 45 94 43

20 39.3430 0.16802 9.2219E+08 2 156 97 45 94 43

22 39.3729 0.18793 9.1486E+08 2 156 97 45 94 43

31 39.4881 0.27752 7.1976E+08 2 156 97 45 94 43

41 39.8568 0.53486 2.7193E+08 2 156 95 44 94 43

51 40.4772 0.82702 1.2282E+08 2 156 94 44 93 42

60 41.2241 1.10838 7.4785E+07 2 156 92 44 92 42

Time 37,701 33,498 30,594 31,113 30,358



Table 3

Sample result for Example 2, h ¼ 0:02174, e ¼ 5:0� 10�4, tol ¼ 10�10, k� ¼ 39:3179, the domain X was decomposed into two and three

overlapping subdomains

NCS k MAXN j2 Method I VI VII

NCI itr itr itr

8 38.8164 0.05557 4.4593E+07 2 693, 693 21, 36 42, 69

14 39.2560 0.14720 9.4943E+07 2 782, 782 22, 37 43, 72

16 39.3179 0.18009 9.9096E+07 2 801, 801 23, 37 44, 72

18 39.3691 0.21309 9.6727E+07 2 806, 806 23, 37 44, 72

28 39.5921 0.37804 5.7012E+07 2 815, 815 23, 38 45, 73

38 39.8494 0.54172 3.1978E+07 2 820, 820 23, 38 45, 74

48 40.1693 0.70338 2.0044E+07 2 822, 822 23, 38 45, 74

60 56.9003 3.45530 1.4025E+06 2 856, 856 23, 38 46, 75

Time 7220, 9406 2399, 2444 3580, 3594

Table 4

Sample result for Example 3, h ¼ 0:01724, e ¼ 5:0� 10�4, tol ¼ 10�10, k� ¼ 39:3919, the domain X was decomposed into two, three,

and four overlapping subdomains, respectively

NCS k MAXN j2 Method I VI VII

NCI itr itr itr

8 39.0344 0.03377 1.6966E+08 3 1082, 1061, 1082 25, 44, 57 49, 86, 109

14 39.3558 0.10994 4.3828E+08 2 1190, 1115, 1190 27, 46, 62 52, 89, 117

16 39.3919 0.13648 4.5570E+08 2 1225, 1211, 1225 27, 46, 62 52, 90, 119

18 39.4217 0.16305 4.3912E+08 2 1247, 1230, 1247 27, 46, 63 53, 90, 122

28 39.6460 0.37512 1.6341E+08 2 1280, 1273, 1280 28, 47, 63 55, 92, 124

38 40.3410 0.76635 4.3862E+07 2 1288, 1281, 1288 28, 47, 64 55, 92, 124

48 41.4333 1.14396 2.0879E+07 2 1292, 1287, 1292 28, 47, 65 55, 92, 128

60 43.1923 1.57418 1.1886E+07 2 1309, 1293, 1309 28, 47, 65 55, 93, 128

Time 25,035, 32,827, 33,498 11,088, 9252, 9244 16,066, 13,567, 12,748
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where ÂA 2 R1058�1058. The Schur complement C is a matrix of order 92� 92. We used the GMRES without

preconditioner and the preconditioned GMRES method with preconditioners M1, M2, M3;1 and M5;3, which

are denoted by the methods I, II, III, IV and V, respectively, to solve Step 5 of Algorithm 3.1. Table 1 shows

our sample numerical results, where the first bifurcation point was detected at ðu�; k�Þ ¼ ð0; 39:3179Þ.
Next, we reduce the uniform meshsize to h ¼ 0:01282 on the x- and y-axis, respectively, and implemented

the same methods as above. We chose m1 ¼ 18, m2 ¼ 19, and obtained the linear system (4.1), where

ÂA 2 R3042�3042. The Schur complement C is a matrix of order 156� 156. Table 2 shows our sample nu-

merical results, where the first bifurcation point was detected at ðu�; k�Þ ¼ ð0; 39:3430Þ. Compared to the

average number of iterations required in each continuation step and the total execution time, the pre-

conditioner M5;3 is superior to the other preconditioners. Fig. 8 shows the convergence behavior of the

methods I–V, where h ¼ 0:01282.

Example 2 (Overlapping domain decomposition). We exploited the numerical methods described in Section

3.3 to trace the first solution branch of the reduced problem (3.1). The domain X was decomposed into two

overlapping subdomains X1 and X2. Eq. (3.1) was discretized by using the centered difference approxi-

mations with uniform meshsize h ¼ 0:02174 on the x- and y-axis, respectively. Let the common border C be
y ¼ 0:25. We chose m1 ¼ m2 ¼ 10, and obtained the linear system (4.1), where ÂA 2 R1058�1058.



Fig. 8. Convergence behavior of the methods I–V at k ¼ 39:3583, where h ¼ 0:01282.
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The GMRES method, and the preconditioned GMRES method with preconditioners Mms and Mas,

which are denoted by the methods VI, VII, were implemented to trace the solution curve of Eq. (3.1). In
total we executed 60 continuation steps, and 240 linear systems were solved. Next, the domain X was

decomposed into three overlapping subdomains X1, X2 and X3. Let C1;2 and C2;3 be y ¼ 7
46

and y ¼ 8
23
,

respectively. We chose m1 ¼ 5, m2 ¼ m3 ¼ 6, and obtained the linear system (4.1), where ÂA 2 R1058�1058. We
Fig. 9. Convergence behavior of the methods VI and VII on four subdomains at k ¼ 39:4074, where h ¼ 0:01724.
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used the same methods as above to trace the first solution curve of (3.1). In total we executed 60 contin-

uation steps, and 240 linear systems were solved.

Table 3 shows that the bifurcation point was detected at ðu�; k�Þ ¼ ð0; 39:3179Þ.

Example 3 (Overlapping domain decomposition). We implemented the same methods as in Example 2 with

uniform meshsize h ¼ 0:01724 on the x- and y-axis, respectively. The domain X was decomposed into two,

three, and four overlapping subdomains, respectively. In the case of two subdomains, let the interface C be

y ¼ 0:25 and we chose m1 ¼ m2 ¼ 13. In the case of three subdomains, let C1;2 be y ¼ 9
58
and C2;3 be y ¼ 10

29
.

We chose m1 ¼ 7, m2 ¼ m3 ¼ 8. In the case of four subdomains, let C1;2, C2;3 and C3;4 be y ¼ 7
58
, y ¼ 15

58
and

y ¼ 23
58
, respectively. We chose m1 ¼ m2 ¼ m3 ¼ m4 ¼ 5. In all cases, we obtained the linear systems (4.1),

where ÂA 2 R1682�1682.

Tables 4 shows the numerical results, where the first bifurcation point was detected at ðu�; k�Þ ¼
ð0; 39:3919Þ. Fig. 9 shows the convergence behavior of the methods VI and VII on four subdomains, where

h ¼ 0:01724.
5. Conclusions

Based on the numerical results reported in Section 4, we wish to give some concluding remarks con-

cerning the performance of the numerical algorithms we described in Sections 2 and 3.
1. For the nonoverlapping domain decomposition, the results in Tables 1 and 2 show that the methods

II–V are effective only when the order of the coefficient matrix is large enough.

2. From Tables 1 and 3 we see that the nonoverlapping domain decomposition with various precondi-

tioners is superior to the overlapping domain decomposition with multiplicative or additive precon-

ditioner if the same size of linear systems are solved. For the overlapping domain decomposition,

however, the preconditioned GMRES with multiplicative or additive preconditioner is superior to

the GMRES.
Fig. 10. Total execution time on two, three and four overlapping subdomains, where h ¼ 0:01724.
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3. For the overlapping domain decomposition, from the viewpoint of the average number of iterations

required in each continuation step and the total execution time, the multiplicative Schwarz precondi-

tioner is obviously superior to the additive Schwarz preconditioner, see Table 3. Moreover, for both

cases, the total execution time decreases as the number of subdomains increases. See Fig. 10. It is also
interesting to see that the average number of iterations required to solving linear systems increases as

the number of subdomains decreases.
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